Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
AIDS ; 38(6): 791-801, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38300257

ABSTRACT

OBJECTIVE: This study investigated the association of plasma microRNAs before and during antiretroviral therapy (ART) with poor CD4 + T-cell recovery during the first year of ART. DESIGN: MicroRNAs were retrospectively measured in stored plasma samples from people with HIV (PWH) in sub-Saharan Africa who were enrolled in a longitudinal multicountry cohort and who had plasma viral-load less than 50 copies/ml after 12 months of ART. METHODS: First, the levels of 179 microRNAs were screened in a subset of participants from the lowest and highest tertiles of CD4 + T-cell recovery (ΔCD4) ( N  = 12 each). Next, 11 discordant microRNAs, were validated in 113 participants (lowest tertile ΔCD4: n  = 61, highest tertile ΔCD4: n  = 52). For discordant microRNAs in the validation, a pathway analysis was conducted. Lastly, we compared microRNA levels of PWH to HIV-negative controls. RESULTS: Poor CD4 + T-cell recovery was associated with higher levels of hsa-miR-199a-3p and hsa-miR-200c-3p before ART, and of hsa-miR-17-5p and hsa-miR-501-3p during ART. Signaling by VEGF and MET, and RNA polymerase II transcription pathways were identified as possible targets of hsa-miR-199a-3p, hsa-200c-3p, and hsa-miR-17-5p. Compared with HIV-negative controls, we observed lower hsa-miR-326, hsa-miR-497-5p, and hsa-miR-501-3p levels before and during ART in all PWH, and higher hsa-miR-199a-3p and hsa-miR-200c-3p levels before ART in all PWH, and during ART in PWH with poor CD4 + T-cell recovery only. CONCLUSION: These findings add to the understanding of pathways involved in persistent HIV-induced immune dysregulation during suppressive ART.


Subject(s)
HIV Infections , HIV-1 , MicroRNAs , Humans , HIV-1/genetics , Retrospective Studies , HIV Infections/drug therapy , MicroRNAs/genetics , T-Lymphocytes
2.
Viruses ; 16(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38400088

ABSTRACT

HIV-exposed, uninfected (HEU) children present with suboptimal growth and a greater susceptibility to infection in early life when compared to HIV-unexposed, uninfected (HUU) children. The reasons for these findings are poorly understood. We used a metabolomics approach to investigate the metabolic differences between pregnant women living with HIV (PWLWH) and their HEU infants compared to the uninfected and unexposed controls. Untargeted metabolomic profiling was performed using 1H-NMR spectroscopy on maternal plasma at 28 weeks' gestation and infant plasma at birth, 6/10 weeks, and 6 months. PWLWH were older but, apart from a larger 28 week mid-upper-arm circumference, anthropometrically similar to the controls. At all the time points, HEU infants had a significantly reduced growth compared to HUU infants. PWLWH had lower plasma 3-hydroxybutyric acid, acetoacetic acid, and acetic acid levels. In infants at birth, threonine and myo-inositol levels were lower in the HEU group while formic acid levels were higher. At 6/10 weeks, betaine and tyrosine levels were lower in the HEU group. Finally, at six months, 3-hydroxyisobutyric acid levels were lower while glycine levels were higher in the HEU infants. The NMR analysis has provided preliminary information indicating differences between HEU and HUU infants' plasma metabolites involved in energy utilization, growth, and protection from infection.


Subject(s)
HIV Infections , Infant , Infant, Newborn , Child , Humans , Female , Pregnancy , HIV Infections/prevention & control , Mothers , Betaine , Metabolomics
4.
Front Immunol ; 14: 1231276, 2023.
Article in English | MEDLINE | ID: mdl-37600825

ABSTRACT

The kinetics of Fc-mediated functions following SARS-CoV-2 infection or vaccination in people living with HIV (PLWH) are not known. We compared SARS-CoV-2 spike-specific Fc functions, binding, and neutralization in PLWH and people without HIV (PWOH) during acute infection (without prior vaccination) with either the D614G or Beta variants of SARS-CoV-2, or vaccination with ChAdOx1 nCoV-19. Antiretroviral treatment (ART)-naïve PLWH had significantly lower levels of IgG binding, neutralization, and antibody-dependent cellular phagocytosis (ADCP) compared with PLWH on ART. The magnitude of antibody-dependent cellular cytotoxicity (ADCC), complement deposition (ADCD), and cellular trogocytosis (ADCT) was differentially triggered by D614G and Beta. The kinetics of spike IgG-binding antibodies, ADCC, and ADCD were similar, irrespective of the infecting variant between PWOH and PLWH overall. However, compared with PWOH, PLWH infected with D614G had delayed neutralization and ADCP. Furthermore, Beta infection resulted in delayed ADCT, regardless of HIV status. Despite these delays, we observed improved coordination between binding and neutralizing responses and Fc functions in PLWH. In contrast to D614G infection, binding responses in PLWH following ChAdOx-1 nCoV-19 vaccination were delayed, while neutralization and ADCP had similar timing of onset, but lower magnitude, and ADCC was significantly higher than in PWOH. Overall, despite delayed and differential kinetics, PLWH on ART develop comparable responses to PWOH, supporting the prioritization of ART rollout and SARS-CoV-2 vaccination in PLWH.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Cell Cytotoxicity , COVID-19 , HIV Infections , Immunoglobulin Fc Fragments , Spike Glycoprotein, Coronavirus , HIV Infections/blood , HIV Infections/immunology , COVID-19/immunology , COVID-19/prevention & control , Immunoglobulin Fc Fragments/blood , Immunoglobulin Fc Fragments/immunology , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/therapeutic use , Immunoglobulin G/blood , Immunoglobulin G/immunology , Vaccination , Spike Glycoprotein, Coronavirus/immunology , HEK293 Cells , Humans , Immunity, Humoral , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Male , Female , Adult , Middle Aged
5.
Front Immunol ; 14: 1235914, 2023.
Article in English | MEDLINE | ID: mdl-37646024

ABSTRACT

Introduction: SARS-CoV-2 elicits a hyper-inflammatory response that contributes to increased morbidity and mortality in patients with COVID-19. In the case of HIV infection, despite effective anti-retroviral therapy, people living with HIV (PLWH) experience chronic systemic immune activation, which renders them particularly vulnerable to the life-threatening pulmonary, cardiovascular and other complications of SARS-CoV-2 co-infection. The focus of the study was a comparison of the concentrations of systemic indicators o\f innate immune dysfunction in SARS-CoV-2-PCR-positive patients (n=174) admitted with COVID-19, 37 of whom were co-infected with HIV. Methods: Participants were recruited from May 2020 to November 2021. Biomarkers included platelet-associated cytokines, chemokines, and growth factors (IL-1ß, IL-6, IL-8, MIP-1α, RANTES, PDGF-BB, TGF-ß1 and TNF-α) and endothelial associated markers (IL-1ß, IL-1Ra, ICAM-1 and VEGF). Results: PLWH were significantly younger (p=0.002) and more likely to be female (p=0.001); median CD4+ T-cell count was 256 (IQR 115 -388) cells/µL and the median HIV viral load (VL) was 20 (IQR 20 -12,980) copies/mL. Fractional inspired oxygen (FiO2) was high in both groups, but higher in patients without HIV infection (p=0.0165), reflecting a greater need for oxygen supplementation. With the exception of PDGF-BB, the levels of all the biomarkers of innate immune activation were increased in SARS-CoV-2/HIV-co-infected and SARS-CoV-2/HIV-uninfected sub-groups relative to those of a control group of healthy participants. The magnitudes of the increases in the levels of these biomarkers were comparable between the SARS-CoV-2 -infected sub-groups, the one exception being RANTES, which was significantly higher in the sub-group without HIV. After adjusting for age, sex, and diabetes in the multivariable model, only the association between HIV status and VEGF was statistically significant (p=0.034). VEGF was significantly higher in PLWH with a CD4+ T-cell count >200 cells/µL (p=0.040) and those with a suppressed VL (p=0.0077). Discussion: These findings suggest that HIV co-infection is not associated with increased intensity of the systemic innate inflammatory response during SARS-CoV-2 co-infection, which may underpin the equivalent durations of hospital stay, outcome and mortality rates in the SARS-CoV-2/HIV-infected and -uninfected sub-groups investigated in the current study. The apparent association of increased levels of plasma VEGF with SARS-CoV-2/HIV co-infection does, however, merit further investigation.


Subject(s)
COVID-19 , Coinfection , HIV Infections , Humans , Female , Male , SARS-CoV-2 , Chemokine CCL5 , Becaplermin , HIV Infections/complications , Vascular Endothelial Growth Factor A , Biomarkers
7.
Heliyon ; 9(4): e15010, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37009248

ABSTRACT

Various metabolomics studies have reported increased phenylalanine serum concentrations in SARS-CoV-2 positive cases and have correlated increased phenylalanine with COVID-19 severity. In this study, we report similar results based upon metabolomics analysis of serum collected from a South African cohort of adults with confirmed COVID-19. The novelty of this study is the inclusion of HIV positive cases in the African context. We found that pre-existing HIV co-infection exacerbates the disruption of phenylalanine metabolism in COVID-19. What is lacking in literature is biological context and deeper understanding of perturbed phenylalanine metabolism in COVID-19. We delve deep into the metabolism of phenylalanine in COVID-19 and posit new insights for COVID-19 cases co-infected with HIV; namely, HIV-COVID-19 co-infected individuals do not have sufficient bioavailability of tetrahydrobiopterin (BH4). Hence, we identify BH4 as a potential supplement to alleviate/lessen COVID-19 symptoms.

8.
Viruses ; 15(2)2023 01 18.
Article in English | MEDLINE | ID: mdl-36851493

ABSTRACT

With the global rollout of mother-to-child prevention programs for women living with HIV, vertical transmission has been all but eliminated in many countries. However, the number of children who are exposed in utero to HIV and antiretroviral therapy (ART) is ever-increasing. These children who are HIV-exposed-but-uninfected (CHEU) are now well recognized as having persistent health disparities compared to children who are HIV-unexposed-and-uninfected (CHUU). Differences reported between these two groups include immune dysfunction and higher levels of inflammation, cognitive and metabolic abnormalities, as well as increased morbidity and mortality in CHEU. The reasons for these disparities remain largely unknown. The present review focuses on a proposed link between immunometabolic aberrations and clinical pathologies observed in the rapidly expanding CHEU population. By drawing attention, firstly, to the significance of the immune and metabolic alterations observed in these children, and secondly, the impact of their healthcare requirements, particularly in low- and middle-income countries, this review aims to sensitize healthcare workers and policymakers about the long-term risks of in utero exposure to HIV and ART.


Subject(s)
Health Personnel , Infectious Disease Transmission, Vertical , Pregnancy , Humans , Female , Inflammation , Social Group
9.
Cell Rep Med ; 4(1): 100910, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36603577

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.4 and BA.5 variants caused major waves of infections. Here, we assess the sensitivity of BA.4 to binding, neutralization, and antibody-dependent cellular cytotoxicity (ADCC) potential, measured by FcγRIIIa signaling, in convalescent donors infected with four previous variants of SARS-CoV-2, as well as in post-vaccination breakthrough infections (BTIs) caused by Delta or BA.1. We confirm that BA.4 shows high-level neutralization resistance regardless of the infecting variant. However, BTIs retain activity against BA.4, albeit at reduced titers. BA.4 sensitivity to ADCC is reduced compared with other variants but with smaller fold losses compared with neutralization and similar patterns of cross-reactivity. Overall, the high neutralization resistance of BA.4, even to antibodies from BA.1 infection, provides an immunological mechanism for the rapid spread of BA.4 immediately after a BA.1-dominated wave. Furthermore, although ADCC potential against BA.4 is reduced, residual activity may contribute to observed protection from severe disease.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , COVID-19 Serotherapy , SARS-CoV-2 , Humans , Antibodies , Breakthrough Infections , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology
10.
Molecules ; 27(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558190

ABSTRACT

There is increasing awareness of an association between the uptake of the HIV integrase inhibitor, dolutegravir, in first-line antiretroviral regimens with unusual weight gain and development of the metabolic syndrome, particularly in African women. Although seemingly unexplored, the development of systemic inflammation linked to the putative pro-inflammatory activity of dolutegravir represents a plausible pathophysiological mechanism of this unusual weight gain. This possibility was explored in the current study undertaken to investigate the effects of dolutegravir (2.5−20 µg/mL) on several pro-inflammatory activities of neutrophils isolated from the blood of healthy, adult humans. These activities included the generation of reactive oxygen species (ROS), degranulation (elastase release) and alterations in the concentrations of cytosolic Ca2+ using chemiluminescence, spectrophotometric and fluorimetric procedures, respectively. Exposure of neutrophils to dolutegravir alone resulted in the abrupt, dose-related, and significant (p < 0.0039−p < 0.0022) generation of ROS that was attenuated by the inclusion of the Ca2+-chelating agent, EGTA, or inhibitors of NADPH oxidase (diphenyleneiodonium chloride, DPI), phospholipase C (U733122), myeloperoxidase (sodium azide) and phosphoinositol-3-kinase (wortmannin). In addition, exposure to dolutegravir augmented the release of elastase by stimulus-activated neutrophils. These pro-inflammatory effects of dolutegravir on neutrophils were associated with significant, rapid, and sustained increases in the concentrations of cytosolic Ca2+ that appeared to originate from the extracellular compartment, seemingly consistent with an ionophore-like property of dolutegravir. These findings are preliminary and necessitate verification in the clinical setting of HIV infection. Nevertheless, given the complex link between inflammation and obesity, these pro-inflammatory interactions of dolutegravir with neutrophils may contribute to unexplained weight gain, possibly via the development of insulin resistance.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , Adult , Humans , Female , Reactive Oxygen Species/metabolism , HIV Infections/drug therapy , HIV Infections/metabolism , Neutrophils , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/metabolism , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use , Pancreatic Elastase/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism
11.
J Immunotoxicol ; 19(1): 1-8, 2022 12.
Article in English | MEDLINE | ID: mdl-36394569

ABSTRACT

Dolutegravir is a highly potent HIV integrase strand transfer inhibitor that is recommended for first-line anti-retroviral treatment in all major treatment guidelines. A recent study has shown that people taking this class of anti-retroviral treatment have a substantially higher risk of early-onset cardiovascular disease, a condition shown previously to be associated with increased platelet reactivity. To date, few studies have explored the effects of dolutegravir on platelet activation. Accordingly, the current study was undertaken with the primary objective of investigating the effects of dolutegravir on the reactivity of human platelets in vitro. Platelet-rich plasma, isolated platelets, or buffy coat cell suspensions prepared from the blood of healthy adults were treated with dolutegravir (2.5-10 µg/ml), followed by activation with adenosine 5'-diphosphate (ADP), thrombin, or a thromboxane A2 receptor agonist U46619. Expression of platelet CD62P (P-selectin), formation of heterotypic neutrophil:platelet aggregates, and calcium (Ca2+) fluxes were measured using flow cytometry and fluorescence spectrometry, respectively. Dolutegravir caused dose-related potentiation of ADP-, thrombin- and U46619-activated expression of CD62P by platelets, as well as a significant increases in formation of neutrophil:platelet aggregates. These effects were paralleled by a spontaneous, receptor-independent elevation in cytosolic Ca2+ that appears to underpin the mechanism by which the antiretroviral agent augments the responsiveness of these cells to ADP, thrombin and U46619. The most likely mechanism of dolutegravir-mediated increases in platelet cytosolic Ca2+ relates to a combination of lipophilicity and divalent/trivalent metal-binding and/or chelating properties of the anti-retroviral agent. These properties are likely to confer ionophore-type activities on dolutegravir that would promote movement of Ca2+ across the plasma membrane, delivering the cation to the cytosol where it would augment Ca2+-dependent intracellular signaling mechanisms. These effects of dolutegravir may lead to hyper-activation of platelets which, if operative in vivo, may contribute to an increased risk for cardiometabolic co-morbidities.


Subject(s)
Calcium , HIV Infections , Adult , Humans , Thrombin/pharmacology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Platelet Activation , Adenosine Diphosphate/pharmacology , HIV Infections/drug therapy , Ionophores/pharmacology
13.
J Virol ; 96(15): e0055822, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35867572

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.


Subject(s)
Antibodies, Viral , Cross Reactions , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Cross Reactions/immunology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
16.
Cell Host Microbe ; 30(6): 880-886.e4, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35436444

ABSTRACT

The SARS-CoV-2 Omicron variant escapes neutralizing antibodies elicited by vaccines or infection. However, whether Omicron triggers cross-reactive humoral responses to other variants of concern (VOCs) remains unknown. We used plasma from 20 unvaccinated and 7 vaccinated individuals infected by Omicron BA.1 to test binding, Fc effector function, and neutralization against VOCs. In unvaccinated individuals, Fc effector function and binding antibodies targeted Omicron and other VOCs at comparable levels. However, Omicron BA.1-triggered neutralization was not extensively cross-reactive for VOCs (14- to 31-fold titer reduction), and we observed 4-fold decreased titers against Omicron BA.2. In contrast, vaccination followed by breakthrough Omicron infection associated with improved cross-neutralization of VOCs with titers exceeding 1:2,100. This has important implications for the vulnerability of unvaccinated Omicron-infected individuals to reinfection by circulating and emerging VOCs. Although Omicron-based immunogens might be adequate boosters, they are unlikely to be superior to existing vaccines for priming in SARS-CoV-2-naive individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests
17.
AIDS Patient Care STDS ; 36(4): 130-144, 2022 04.
Article in English | MEDLINE | ID: mdl-35438523

ABSTRACT

While the impact of Community Health Workers (CHWs) on home-based human immunodeficiency virus (HIV) care has been documented, barriers and recommendations have not been systematically reviewed. Following the reporting requirements of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we used an aggregative narrative synthesis approach to summarize the results of qualitative studies published between January 1, 2000, and November 6, 2020 in the following databases: PubMed, CINAHL, PsychINFO, Web of Science, and Google Scholar. In total, 17 studies met the selection criteria and were included in the analysis. They reported on a range of roles played by CHWs in HIV care, including education and health promotion; HIV-specific care (HIV testing services; screening for opportunistic infections and acute illness); medication delivery; tracing persons who had defaulted from care; and support (treatment support; referral; home-based care; and psychosocial support). Many different barriers to community-based HIV care were reported and centered on the following themes: Stigma and nondisclosure; inadequate support (lack of resources, inadequate training, inadequate funding, and inadequate monitoring); and health system challenges (patients' preference for more frequent visits and poor integration of CHWs in the wider health care system). Recommendations to mitigate these barriers included: addressing HIV-related stigma; introducing updated and relevant CHW training; strengthening the supervision of CHWs; coordinating care between the home and facilities; incorporating patient-centered mHealth approaches; and committing to the funding and resources needed for successful community-based care. In summary, CHWs are providing a variety of important community-based HIV services but face challenges with regards to training, resources, and supervision.


Subject(s)
Community Health Workers , HIV Infections , Africa South of the Sahara , Community Health Workers/psychology , HIV Infections/diagnosis , HIV Infections/drug therapy , Humans , Qualitative Research , Social Stigma
18.
Cell Rep Med ; 3(3): 100535, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35474744

ABSTRACT

The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralization-resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.


Subject(s)
COVID-19 , Viral Vaccines , Ad26COVS1 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2/genetics
19.
Cell Rep Med ; 3(2): 100510, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35233544

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin Fc Fragments/immunology , SARS-CoV-2/immunology , Ad26COVS1/immunology , Ad26COVS1/therapeutic use , Adult , Aged , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , Cohort Studies , Cross Reactions , Female , HEK293 Cells , Humans , Jurkat Cells , Male , Middle Aged , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/immunology , THP-1 Cells , Treatment Outcome , Vaccination/methods
20.
Nature ; 603(7901): 488-492, 2022 03.
Article in English | MEDLINE | ID: mdl-35102311

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529) has multiple spike protein mutations1,2 that contribute to viral escape from antibody neutralization3-6 and reduce vaccine protection from infection7,8. The extent to which other components of the adaptive response such as T cells may still target Omicron and contribute to protection from severe outcomes is unknown. Here we assessed the ability of T cells to react to Omicron spike protein in participants who were vaccinated with Ad26.CoV2.S or BNT162b2, or unvaccinated convalescent COVID-19 patients (n = 70). Between 70% and 80% of the CD4+ and CD8+ T cell response to spike was maintained across study groups. Moreover, the magnitude of Omicron cross-reactive T cells was similar for Beta (B.1.351) and Delta (B.1.617.2) variants, despite Omicron harbouring considerably more mutations. In patients who were hospitalized with Omicron infections (n = 19), there were comparable T cell responses to ancestral spike, nucleocapsid and membrane proteins to those in patients hospitalized in previous waves dominated by the ancestral, Beta or Delta variants (n = 49). Thus, despite extensive mutations and reduced susceptibility to neutralizing antibodies of Omicron, the majority of T cell responses induced by vaccination or infection cross-recognize the variant. It remains to be determined whether well-preserved T cell immunity to Omicron contributes to protection from severe COVID-19 and is linked to early clinical observations from South Africa and elsewhere9-12.


Subject(s)
COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunity, Cellular , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Adult , Aged , COVID-19 Vaccines/immunology , Convalescence , Hospitalization , Humans , Middle Aged , SARS-CoV-2/chemistry , SARS-CoV-2/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...